135 research outputs found

    A Statistical Framework For Nutriomics Data Analysis

    Get PDF
    Nutriomics is a new discipline that investigates the relationship between nutrition and health through the use of high throughput omics technologies. However, the inherent complexity of nutriomics data poses several challenges for data analysis. In this thesis, the author introduces nutriomics and the statistical challenges associated with its analysis. They propose statistical modelling and machine learning methods to tackle three main challenges: non-linearity, high dimensionality, and data heterogeneity. To deal with these challenges, we first propose a statistical framework, that we coin LC-N2G, to test whether the association between nutrition intake and omics features of interest are significantly different from being unrelated. We use public data as an example to show LC-N2G's ability to discover non-linear associations between nutrition and gene expression. Then we propose a statistical method, coined eNODAL, to cluster high-dimensional omics features based on how they respond to nutrition intake. The application of eNODAL to a mouse proteomics nutrition study shows that eNODAL can identify interpretable clusters of proteins with similar responses to diet and drug treatment. Finally, a statistical model, which we call NEMoE, is proposed to uncover the heterogeneous interplay among diet, omics, and health outcomes. We use a microbiome Parkinson’s disease (PD) study to illustrate the method and show that NEMoE is able to identify diet-specific microbial signatures of PD. Overall, this thesis proposes statistical methods to analyze nutriomics data and provides possible future extensions based on the research. The methods proposed in this thesis could help researchers better understand the complex relationships between nutrition and health, ultimately leading to improved health outcomes

    Deep Item-based Collaborative Filtering for Top-N Recommendation

    Full text link
    Item-based Collaborative Filtering(short for ICF) has been widely adopted in recommender systems in industry, owing to its strength in user interest modeling and ease in online personalization. By constructing a user's profile with the items that the user has consumed, ICF recommends items that are similar to the user's profile. With the prevalence of machine learning in recent years, significant processes have been made for ICF by learning item similarity (or representation) from data. Nevertheless, we argue that most existing works have only considered linear and shallow relationship between items, which are insufficient to capture the complicated decision-making process of users. In this work, we propose a more expressive ICF solution by accounting for the nonlinear and higher-order relationship among items. Going beyond modeling only the second-order interaction (e.g. similarity) between two items, we additionally consider the interaction among all interacted item pairs by using nonlinear neural networks. Through this way, we can effectively model the higher-order relationship among items, capturing more complicated effects in user decision-making. For example, it can differentiate which historical itemsets in a user's profile are more important in affecting the user to make a purchase decision on an item. We treat this solution as a deep variant of ICF, thus term it as DeepICF. To justify our proposal, we perform empirical studies on two public datasets from MovieLens and Pinterest. Extensive experiments verify the highly positive effect of higher-order item interaction modeling with nonlinear neural networks. Moreover, we demonstrate that by more fine-grained second-order interaction modeling with attention network, the performance of our DeepICF method can be further improved.Comment: 25 pages, submitted to TOI

    Explainable Reasoning over Knowledge Graphs for Recommendation

    Full text link
    Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.Comment: 8 pages, 5 figures, AAAI-201

    Relational Collaborative Filtering:Modeling Multiple Item Relations for Recommendation

    Get PDF
    Existing item-based collaborative filtering (ICF) methods leverage only the relation of collaborative similarity. Nevertheless, there exist multiple relations between items in real-world scenarios. Distinct from the collaborative similarity that implies co-interact patterns from the user perspective, these relations reveal fine-grained knowledge on items from different perspectives of meta-data, functionality, etc. However, how to incorporate multiple item relations is less explored in recommendation research. In this work, we propose Relational Collaborative Filtering (RCF), a general framework to exploit multiple relations between items in recommender system. We find that both the relation type and the relation value are crucial in inferring user preference. To this end, we develop a two-level hierarchical attention mechanism to model user preference. The first-level attention discriminates which types of relations are more important, and the second-level attention considers the specific relation values to estimate the contribution of a historical item in recommending the target item. To make the item embeddings be reflective of the relational structure between items, we further formulate a task to preserve the item relations, and jointly train it with the recommendation task of preference modeling. Empirical results on two real datasets demonstrate the strong performance of RCF. Furthermore, we also conduct qualitative analyses to show the benefits of explanations brought by the modeling of multiple item relations

    Dual-terminal event triggered control for cyber-physical systems under false data injection attacks

    Get PDF
    summary:This paper deals with the problem of security-based dynamic output feedback control of cyber-physical systems (CPSs) with the dual-terminal event triggered mechanisms (DT-ETM) under false data injection (FDI) attacks. Considering the limited attack energy, FDI attacks taking place in transmission channels are modeled as extra bounded disturbances for the resulting closed-loop system, thus enabling HH_{\infty} performance analysis with a suitable ϱ\varrho attenuation level. Then two buffers at the controller and actuator sides are skillfully introduced to cope with the different transmission delays in such a way to facilitate the subsequent security analysis. Next, a dynamic output feedback security control (DOFSC) model based on the DT-ETM schemes under FDI attacks is well constructed. Furthermore, novel criteria for stability analysis and robust stabilization are carefully derived by exploiting Lyapunov-Krasovskii theory and LMIs technique. Finally, an illustrative example is provided to show the effectiveness of the proposed method
    corecore